Albert Einstein
Swiss Scientist
18791955 A selection from RELATIVITY
Narrated by Julian LopezMorillas
This file is 5.2 MB;
running time is 22 minutes
alternate download link
This audio program is copyrighted by Redwood Audiobooks.
Permission is granted to download for personal use only;
not for distribution or commercial use.
PHYSICAL MEANING OF GEOMETRICAL PROPOSITIONS
In your schooldays most of you who read this book made acquaintance
with the noble building of Euclid's geometry, and you remember —
perhaps with more respect than love — the magnificent structure, on
the lofty staircase of which you were chased about for uncounted hours
by conscientious teachers. By reason of our past experience, you would
certainly regard everyone with disdain who should pronounce even the
most outoftheway proposition of this science to be untrue. But
perhaps this feeling of proud certainty would leave you immediately if
some one were to ask you: "What, then, do you mean by the assertion
that these propositions are true?" Let us proceed to give this
question a little consideration.
Geometry sets out form certain conceptions such as "plane," "point,"
and "straight line," with which we are able to associate more or less
definite ideas, and from certain simple propositions (axioms) which,
in virtue of these ideas, we are inclined to accept as "true." Then,
on the basis of a logical process, the justification of which we feel
ourselves compelled to admit, all remaining propositions are shown to
follow from those axioms, i.e. they are proven. A proposition is then
correct ("true") when it has been derived in the recognised manner
from the axioms. The question of "truth" of the individual geometrical
propositions is thus reduced to one of the "truth" of the axioms. Now
it has long been known that the last question is not only unanswerable
by the methods of geometry, but that it is in itself entirely without
meaning. We cannot ask whether it is true that only one straight line
goes through two points. We can only say that Euclidean geometry deals
with things called "straight lines," to each of which is ascribed the
property of being uniquely determined by two points situated on it.
The concept "true" does not tally with the assertions of pure
geometry, because by the word "true" we are eventually in the habit of
designating always the correspondence with a "real" object; geometry,
however, is not concerned with the relation of the ideas involved in
it to objects of experience, but only with the logical connection of
these ideas among themselves.
It is not difficult to understand why, in spite of this, we feel
constrained to call the propositions of geometry "true." Geometrical
ideas correspond to more or less exact objects in nature, and these
last are undoubtedly the exclusive cause of the genesis of those
ideas. Geometry ought to refrain from such a course, in order to give
to its structure the largest possible logical unity. The practice, for
example, of seeing in a "distance" two marked positions on a
practically rigid body is something which is lodged deeply in our
habit of thought. We are accustomed further to regard three points as
being situated on a straight line, if their apparent positions can be
made to coincide for observation with one eye, under suitable choice
of our place of observation.
If, in pursuance of our habit of thought, we now supplement the
propositions of Euclidean geometry by the single proposition that two
points on a practically rigid body always correspond to the same
distance (lineinterval), independently of any changes in position to
which we may subject the body, the propositions of Euclidean geometry
then resolve themselves into propositions on the possible relative
position of practically rigid bodies. Geometry which has been
supplemented in this way is then to be treated as a branch of physics.
We can now legitimately ask as to the "truth" of geometrical
propositions interpreted in this way, since we are justified in asking
whether these propositions are satisfied for those real things we have
associated with the geometrical ideas. In less exact terms we can
express this by saying that by the "truth" of a geometrical
proposition in this sense we understand its validity for a
construction with rule and compasses.
Of course the conviction of the "truth" of geometrical propositions in
this sense is founded exclusively on rather incomplete experience. For
the present we shall assume the "truth" of the geometrical
propositions, then at a later stage (in the general theory of
relativity) we shall see that this "truth" is limited, and we shall
consider the extent of its limitation.
THE SYSTEM OF COORDINATES
On the basis of the physical interpretation of distance which has been
indicated, we are also in a position to establish the distance between
two points on a rigid body by means of measurements. For this purpose
we require a " distance " (rod S) which is to be used once and for
all, and which we employ as a standard measure. If, now, A and B are
two points on a rigid body, we can construct the line joining them
according to the rules of geometry ; then, starting from A, we can
mark off the distance S time after time until we reach B. The number
of these operations required is the numerical measure of the distance
AB. This is the basis of all measurement of length.
Every description of the scene of an event or of the position of an
object in space is based on the specification of the point on a rigid
body (body of reference) with which that event or object coincides.
This applies not only to scientific description, but also to everyday
life. If I analyse the place specification " Times Square, New York,"
A I arrive at the following result. The earth is the rigid body
to which the specification of place refers; " Times Square, New York,"
is a welldefined point, to which a name has been assigned, and with
which the event coincides in space.
This primitive method of place specification deals only with places on
the surface of rigid bodies, and is dependent on the existence of
points on this surface which are distinguishable from each other. But
we can free ourselves from both of these limitations without altering
the nature of our specification of position. If, for instance, a cloud
is hovering over Times Square, then we can determine its position
relative to the surface of the earth by erecting a pole
perpendicularly on the Square, so that it reaches the cloud. The
length of the pole measured with the standard measuringrod, combined
with the specification of the position of the foot of the pole,
supplies us with a complete place specification. On the basis of this
illustration, we are able to see the manner in which a refinement of
the conception of position has been developed.
(a) We imagine the rigid body, to which the place specification is
referred, supplemented in such a manner that the object whose position
we require is reached by. the completed rigid body.
(b) In locating the position of the object, we make use of a number
(here the length of the pole measured with the measuringrod) instead
of designated points of reference.
(c) We speak of the height of the cloud even when the pole which
reaches the cloud has not been erected. By means of optical
observations of the cloud from different positions on the ground, and
taking into account the properties of the propagation of light, we
determine the length of the pole we should have required in order to
reach the cloud.
From this consideration we see that it will be advantageous if, in the
description of position, it should be possible by means of numerical
measures to make ourselves independent of the existence of marked
positions (possessing names) on the rigid body of reference. In the
physics of measurement this is attained by the application of the
Cartesian system of coordinates.
This consists of three plane surfaces perpendicular to each other and
rigidly attached to a rigid body. Referred to a system of
coordinates, the scene of any event will be determined (for the main
part) by the specification of the lengths of the three perpendiculars
or coordinates (x, y, z) which can be dropped from the scene of the
event to those three plane surfaces. The lengths of these three
perpendiculars can be determined by a series of manipulations with
rigid measuringrods performed according to the rules and methods laid
down by Euclidean geometry.
In practice, the rigid surfaces which constitute the system of
coordinates are generally not available ; furthermore, the magnitudes
of the coordinates are not actually determined by constructions with
rigid rods, but by indirect means. If the results of physics and
astronomy are to maintain their clearness, the physical meaning of
specifications of position must always be sought in accordance with
the above considerations.
We thus obtain the following result: Every description of events in
space involves the use of a rigid body to which such events have to be
referred. The resulting relationship takes for granted that the laws
of Euclidean geometry hold for "distances;" the "distance" being
represented physically by means of the convention of two marks on a
rigid body.
SPACE AND TIME IN CLASSICAL MECHANICS
The purpose of mechanics is to describe how bodies change their
position in space with "time." I should load my conscience with grave
sins against the sacred spirit of lucidity were I to formulate the
aims of mechanics in this way, without serious reflection and detailed
explanations. Let us proceed to disclose these sins.
It is not clear what is to be understood here by "position" and
"space." I stand at the window of a railway carriage which is
travelling uniformly, and drop a stone on the embankment, without
throwing it. Then, disregarding the influence of the air resistance, I
see the stone descend in a straight line. A pedestrian who observes
the misdeed from the footpath notices that the stone falls to earth in
a parabolic curve. I now ask: Do the "positions" traversed by the
stone lie "in reality" on a straight line or on a parabola? Moreover,
what is meant here by motion "in space" ? From the considerations of
the previous section the answer is selfevident. In the first place we
entirely shun the vague word "space," of which, we must honestly
acknowledge, we cannot form the slightest conception, and we replace
it by "motion relative to a practically rigid body of reference." The
positions relative to the body of reference (railway carriage or
embankment) have already been defined in detail in the preceding
section. If instead of " body of reference " we insert " system of
coordinates," which is a useful idea for mathematical description, we
are in a position to say : The stone traverses a straight line
relative to a system of coordinates rigidly attached to the carriage,
but relative to a system of coordinates rigidly attached to the
ground (embankment) it describes a parabola. With the aid of this
example it is clearly seen that there is no such thing as an
independently existing trajectory, but only
a trajectory relative to a particular body of reference.
In order to have a complete description of the motion, we must specify
how the body alters its position with time ; i.e. for every point on
the trajectory it must be stated at what time the body is situated
there. These data must be supplemented by such a definition of time
that, in virtue of this definition, these timevalues can be regarded
essentially as magnitudes (results of measurements) capable of
observation. If we take our stand on the ground of classical
mechanics, we can satisfy this requirement for our illustration in the
following manner. We imagine two clocks of identical construction ;
the man at the railwaycarriage window is holding one of them, and the
man on the footpath the other. Each of the observers determines the
position on his own referencebody occupied by the stone at each tick
of the clock he is holding in his hand. In this connection we have not
taken account of the inaccuracy involved by the finiteness of the
velocity of propagation of light. With this and with a second
difficulty prevailing here we shall have to deal in detail later.
THE GALILEIAN SYSTEM OF COORDINATES
As is well known, the fundamental law of the mechanics of
GalileiNewton, which is known as the law of inertia, can be stated
thus: A body removed sufficiently far from other bodies continues in a
state of rest or of uniform motion in a straight line. This law not
only says something about the motion of the bodies, but it also
indicates the referencebodies or systems of coordinates, permissible
in mechanics, which can be used in mechanical description. The visible
fixed stars are bodies for which the law of inertia certainly holds to
a high degree of approximation. Now if we use a system of coordinates
which is rigidly attached to the earth, then, relative to this system,
every fixed star describes a circle of immense radius in the course of
an astronomical day, a result which is opposed to the statement of the
law of inertia. So that if we adhere to this law we must refer these
motions only to systems of coordinates relative to which the fixed
stars do not move in a circle. A system of coordinates of which the
state of motion is such that the law of inertia holds relative to it
is called a " Galileian system of coordinates." The laws of the
mechanics of GalfleiNewton can be regarded as valid only for a
Galileian system of coordinates.
THE PRINCIPLE OF RELATIVITY (IN THE RESTRICTED SENSE)
In order to attain the greatest possible clearness, let us return to
our example of the railway carriage supposed to be travelling
uniformly. We call its motion a uniform translation ("uniform" because
it is of constant velocity and direction, " translation " because
although the carriage changes its position relative to the embankment
yet it does not rotate in so doing). Let us imagine a raven flying
through the air in such a manner that its motion, as observed from the
embankment, is uniform and in a straight line. If we were to observe
the flying raven from the moving railway carriage. we should find that
the motion of the raven would be one of different velocity and
direction, but that it would still be uniform and in a straight line.
Expressed in an abstract manner we may say : If a mass m is moving
uniformly in a straight line with respect to a coordinate system K,
then it will also be moving uniformly and in a straight line relative
to a second coordinate system K1 provided that the latter is
executing a uniform translatory motion with respect to K. In
accordance with the discussion contained in the preceding section, it
follows that:
If K is a Galileian coordinate system. then every other coordinate
system K' is a Galileian one, when, in relation to K, it is in a
condition of uniform motion of translation. Relative to K1 the
mechanical laws of GalileiNewton hold good exactly as they do with
respect to K.
We advance a step farther in our generalisation when we express the
tenet thus: If, relative to K, K1 is a uniformly moving coordinate
system devoid of rotation, then natural phenomena run their course
with respect to K1 according to exactly the same general laws as with
respect to K. This statement is called the principle of relativity (in
the restricted sense).
As long as one was convinced that all natural phenomena were capable
of representation with the help of classical mechanics, there was no
need to doubt the validity of this principle of relativity. But in
view of the more recent development of electrodynamics and optics it
became more and more evident that classical mechanics affords an
insufficient foundation for the physical description of all natural
phenomena. At this juncture the question of the validity of the
principle of relativity became ripe for discussion, and it did not
appear impossible that the answer to this question might be in the
negative.
Nevertheless, there are two general facts which at the outset speak
very much in favour of the validity of the principle of relativity.
Even though classical mechanics does not supply us with a sufficiently
broad basis for the theoretical presentation of all physical
phenomena, still we must grant it a considerable measure of " truth,"
since it supplies us with the actual motions of the heavenly bodies
with a delicacy of detail little short of wonderful. The principle of
relativity must therefore apply with great accuracy in the domain of
mechanics. But that a principle of such broad generality should hold
with such exactness in one domain of phenomena, and yet should be
invalid for another, is a priori not very probable.
We now proceed to the second argument, to which, moreover, we shall
return later. If the principle of relativity (in the restricted sense)
does not hold, then the Galileian coordinate systems K, K1, K2, etc.,
which are moving uniformly relative to each other, will not be
equivalent for the description of natural phenomena. In this case we
should be constrained to believe that natural laws are capable of
being formulated in a particularly simple manner, and of course only
on condition that, from amongst all possible Galileian coordinate
systems, we should have chosen one (K[0]) of a particular state of
motion as our body of reference. We should then be justified (because
of its merits for the description of natural phenomena) in calling
this system " absolutely at rest," and all other Galileian systems K "
in motion." If, for instance, our embankment were the system K[0] then
our railway carriage would be a system K, relative to which less
simple laws would hold than with respect to K[0]. This diminished
simplicity would be due to the fact that the carriage K would be in
motion (i.e."really")with respect to K[0]. In the general laws of
nature which have been formulated with reference to K, the magnitude
and direction of the velocity of the carriage would necessarily play a
part. We should expect, for instance, that the note emitted by an
organpipe placed with its axis parallel to the direction of travel
would be different from that emitted if the axis of the pipe were
placed perpendicular to this direction.
Now in virtue of its motion in an orbit round the sun, our earth is
comparable with a railway carriage travelling with a velocity of about
30 kilometres per second. If the principle of relativity were not
valid we should therefore expect that the direction of motion of the
earth at any moment would enter into the laws of nature, and also that
physical systems in their behaviour would be dependent on the
orientation in space with respect to the earth. For owing to the
alteration in direction of the velocity of revolution of the earth in
the course of a year, the earth cannot be at rest relative to the
hypothetical system K[0] throughout the whole year. However, the most
careful observations have never revealed such anisotropic properties
in terrestrial physical space, i.e. a physical nonequivalence of
different directions. This is very powerful argument in favour of the
principle of relativity. More information about Albert Einstein from Wikipedia Another selection from Albert Einstein:
More selections (25) in this category: Science More selections (25) in the iTunes category: Science & Medicine/Natural Sciences
