Listen to Genius: free audiobook downoads
PUBLISHED BY REDWOOD AUDIOBOOKS  |  WORLD LITERATURE  |  FAMOUS AUTHORS  |  AWARD-WINNING NARRATORS
Home/Authors  |  Titles  |  Categories  |  Fables & Tales  |  Baseball Lessons  |  Narrators
university press audiobooks

Charles Babbage

English mathematician, philosopher, and mechanical engineer

1791-1871

A selection from
PASSAGES FROM THE LIFE OF A PHILOSOPHER

Narrated by Ralph Cosham

Download mp3 file: Passages from the Life of a Philosopher

This file is 5.8 MB; running time is 12 minutes
alternate download link


In order to carry out my pursuits successfully, I had purchased a house with above a quarter of an acre of ground in a very quiet locality. My coach-house was now converted into a forge and a foundry, whilst my stables were transformed into a workshop. I built other extensive workshops myself, and had a fire-proof building for my drawings and draftsmen. Having myself worked with a variety of tools, and having studied the art of constructing each of them, I at length laid it down as a principle—that, except in rare cases, I would never do anything myself if I could afford to hire another person who could do it for me.

The complicated relations which then arose amongst the various parts of the machinery would have baffled the most tenacious memory. I overcame that difficulty by improving and extending a language of signs, the Mechanical Notation, which in 1826 I had explained in a paper. By such means I succeeded in mastering trains of investigation so vast in extent that no length of years ever allotted to one individual could otherwise have enabled me to control. By the aid of the Mechanical Notation, the Analytical Engine became a reality: for it became susceptible of demonstration.

Such works could not be carried on without great expenditure. The fluctuations in the demand and supply of skilled labour were considerable. The railroad mania withdrew from other pursuits the most intellectual and skilful draftsmen. One who had for some years been my chief assistant was tempted by an offer so advantageous that in justice to his own family he could scarcely have declined it. Under these circumstances I took into consideration the plan of advancing his salary to one guinea per day. Whilst this was in abeyance, I consulted my venerable surviving parent. When I had fully explained the circumstances, my excellent mother replied: "My dear son, you have advanced far in the accomplishment of a great object, which is worthy of your ambition. You are capable of completing it. My advice is—pursue it, even if it should oblige you to live on bread and cheese."

This advice entirely accorded with my own feelings. I therefore retained my chief assistant at his advanced salary.

The most important part of the Analytical Engine was undoubtedly the mechanical method of carrying the tens. On this I laboured incessantly, each succeeding improvement advancing me a step or two. The difficulty did not consist so much in the more or less complexity of the contrivance as in the reduction of the time required to effect the carriage. Twenty or thirty different plans and modifications had been drawn. At last I came to the conclusion that I had exhausted the principle of successive carriage. I concluded also that nothing but teaching the Engine to foresee and then to act upon that foresight could ever lead me to the object I desired, namely, to make the whole of any unlimited number of carriages in one unit of time. One morning, after I had spent many hours in the drawing-office in endeavouring to improve the system of successive carriages, I mentioned these views to my chief assistant, and added that I should retire to my library, and endeavour to work out the new principle. He gently expressed a doubt whether the plan was possible, to which I replied that, not being able to prove its impossibility, I should follow out a slight glimmering of light which I thought I perceived.

After about three hours' examination, I returned to the drawing-office with much more definite ideas upon the subject. I had discovered a principle that proved the possibility, and I had contrived mechanism which, I thought, would accomplish my object.

I now commenced the explanation of my views, which I soon found were but little understood by my assistant; nor was this surprising, since in the course of my own attempt at explanation, I found several defects in my plan, and was also led by his questions to perceive others. All these I removed one after another, and ultimately terminated at a late hour my morning's work with the conviction that anticipating carriage was not only within my power, but that I had devised one mechanism at least by which it might be accomplished.

Many years after, my assistant, on his return from a long residence abroad, called upon me, and we talked over the progress of the Analytical Engine. I referred back to the day on which I had made that most important step, and asked him if he recollected it. His reply was that he perfectly remembered the circumstance; for that on retiring to my library, he seriously thought that my intellect was beginning to become deranged. The reader may perhaps be curious to know how I spent the rest of that remarkable day.

After working, as I constantly did, for ten or eleven hours a day, I had arrived at this satisfactory conclusion, and was revising the rough sketches of the new contrivance, when my servant entered the drawing-office, and announced that it was seven o'clock—that I dined in Park Lane—and that it was time to dress. I usually arrived at the house of my friend about a quarter of an hour before the appointed time, in order that we might have a short conversation on subjects on which we were both much interested. Having mentioned my recent success, in which my host thoroughly sympathized, I remarked that it had produced an exhilaration of the spirits which not even his excellent champagne could rival. Having enjoyed the society of Hallam, of Rogers, and of some few others of that delightful circle, I retired, and joined one or perhaps two much more extensive reunions. Having thus forgotten science, and enjoyed society for four or five hours, I returned home. About one o'clock I was asleep in my bed, and thus continued for the next five hours.

This new and rapid system of carrying the tens when two numbers are added together, reduced the actual time of the addition of any number of digits, however large, to nine units of time for the addition, and one unit for the carriage. Thus in ten's units of time, any two numbers, however large, might be added together. A few more units of time, perhaps five or six, were required for making the requisite previous arrangements.

Having thus advanced as nearly as seemed possible to the minimum of time requisite for arithmetical operations, I felt renewed power and increased energy to pursue the far higher object I had in view.

To describe the successive improvements of the Analytical Engine would require many volumes. I only propose here to indicate a few of its more important functions, and to give to those whose minds are duly prepared for it some information which will remove those vague notions of wonder, and even of its impossibility, with which it is surrounded in the minds of some of the most enlightened.

To those who are acquainted with the principles of the Jacquard loom, and who are also familiar with analytical formulæ, a general idea of the means by which the Engine executes its operations may be obtained without much difficulty. In the Exhibition of 1862 there were many splendid examples of such looms.

It is known as a fact that the Jacquard loom is capable of weaving any design which the imagination of man may conceive. It is also the constant practice for skilled artists to be employed by manufacturers in designing patterns. These patterns are then sent to a peculiar artist, who, by means of a certain machine, punches holes in a set of pasteboard cards in such a manner that when those cards are placed in a Jacquard loom, it will then weave upon its produce the exact pattern designed by the artist.

Now the manufacturer may use, for the warp and weft of his work, threads which are all of the same colour; let us suppose them to be unbleached or white threads. In this case the cloth will be woven all of one colour; but there will be a damask pattern upon it such as the artist designed.

But the manufacturer might use the same cards, and put into the warp threads of any other colour. Every thread might even be of a different colour, or of a different shade of colour; but in all these cases the form of the pattern will be precisely the same—the colours only will differ.

The analogy of the Analytical Engine with this well-known process is nearly perfect.

The Analytical Engine consists of two parts:—

1st. The store in which all the variables to be operated upon, as well as all those quantities which have arisen from the result of other operations, are placed.

2nd. The mill into which the quantities about to be operated upon are always brought.

Every formula which the Analytical Engine can be required to compute consists of certain algebraical operations to be performed upon given letters, and of certain other modifications depending on the numerical value assigned to those letters.

There are therefore two sets of cards, the first to direct the nature of the operations to be performed—these are called operation cards: the other to direct the particular variables on which those cards are required to operate—these latter are called variable cards. Now the symbol of each variable or constant, is placed at the top of a column capable of containing any required number of digits.

Under this arrangement, when any formula is required to be computed, a set of operation cards must be strung together, which contain the series of operations in the order in which they occur. Another set of cards must then be strung together, to call in the variables into the mill, the order in which they are required to be acted upon. Each operation card will require three other cards, two to represent the variables and constants and their numerical values upon which the previous operation card is to act, and one to indicate the variable on which the arithmetical result of this operation is to be placed.

But each variable has below it, on the same axis, a certain number of figure-wheels marked on their edges with the ten digits: upon these any number the machine is capable of holding can be placed. Whenever variables are ordered into the mill, these figures will be brought in, and the operation indicated by the preceding card will be performed upon them. The result of this operation will then be replaced in the store.

The Analytical Engine is therefore a machine of the most general nature. Whatever formula it is required to develop, the law of its development must be communicated to it by two sets of cards. When these have been placed, the engine is special for that particular formula. The numerical value of its constants must then be put on the columns of wheels below them, and on setting the Engine in motion it will calculate and print the numerical results of that formula.

Every set of cards made for any formula will at any future time recalculate that formula with whatever constants may be required.

Thus the Analytical Engine will possess a library of its own. Every set of cards once made will at any future time reproduce the calculations for which it was first arranged. The numerical value of its constants may then be inserted.

More information about Charles Babbage from Wikipedia




More selections (25) in this category: Science

More selections (25) in the iTunes category: Science & Medicine/Natural Sciences

university press audiobooks
Into the Classroom A Practical Guide for Starting Student Teaching



Moonshiners and Prohibitionists The Battle over Alcohol in Southern Appalachia



The Shiloh Campaign



English University Life in the Middle Ages



How Racism Takes Place



A Poetics for Screenwriters



The New Concise History of the Crusades



Warfare in Woods and Forests



The Angola Horror The 1867 Train Wreck That Shocked the Nation and Transformed American Railroads



Hell in An Loc The 1972 Easter Invasion and the Battle That Saved South Viet Nam



In the Shadow of Billy the Kid Susan McSween and the Lincoln County War



We Shall Not Be Moved The Jackson Woolworth's Sit-In and the Movement It Inspired



41 Inside the Presidency of George H. W. Bush



The Courage to Be



First Son The Biography of Richard M. Daley



Spirituality in Patient Care Why, How, When, and What



Aesthetics   |   Baseball Lessons   |   Business & Economics   |   Drama   |   Fables & Tales   |   History/Society/Politics   |   Human Sciences   |   Medicine   |   Novels   |   Philosophy   |   Poetry   |   Science   |   Short Stories   |   Travel/Adventure   |   iTunes Categories   |   Links